Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • br Expecting to learn about love bonding

    2018-11-13


    Expecting to learn about love, bonding and romantic attachment Many neurodevelopmental models highlight that the neuroplasticity occurring at puberty opens sensitive windows in the brain, which prime the individual for unique types of learning (Crone and Dahl, 2012). In its broadest usage, the term neuroplasticity includes a wide range of synaptic and non-synaptic processes that underpin the brain’s capacity to instantiate learning, along with the concept of ‘sensitive windows’ for specialized learning. Greenough et al’s (1987) early childhood ‘experience-expectant framework’ proposes that the infant mecamylamine expects specific types of learning, which naturally motivates them to engage in repeated practice and mastery of learning experiences (e.g. walking). These learning experiences, in turn, contributes to critical neural development (Greenough et al., 1987). Recent research into the molecular processes and mechanisms of neuroplasticity has progressed rapidly and highlighted that adolescent brain development, beginning with the onset of puberty, may represent a unique combination of stability and plasticity. This combination creates an important window of opportunity for learning and experience to shape developing neural networks in enduring ways (Hensch 2014; Takesian and Hensch, 2013; Werker and Hensch, 2015). The onset of puberty seems to re-orient greater attention and salience toward social and emotional information-processing streams, which are particularly relevant to interest in romantic relationships and sexual behavior (Dahl 2016; Nelson et al., 2016). More specifically, puberty leads to the development of novel social behaviors and responses to newly emerging social contexts (Brown et al., 2015). At the same time that young people begin to spend increasingly more time with their peers, they experience new, sexualized feelings of attraction that motivate relationship-facilitating behaviors. Given that the biological purpose of puberty is to achieve reproductive maturity, it makes sense that the balance between plasticity and stability in the unique peripubertal neural system would create a window of opportunity for learning and motivation relevant to romantic and sexual behavior. Consider the skills that an adolescent must learn in this domain, including coping with emotions related to finding someone attractive, building communication skills in order to ask someone out on a date, experiencing sexual arousal with a stranger, navigating the social consequences of dating someone more or less popular, coping with rejection or break up, and balancing the biological desire to have sexual experiences with the complex emotions associated with maintaining a romantic relationship. The wide range of early romantic and sexual experiences likely shapes developing neural networks in enduring ways to support lifelong romantic and sexual trajectories. One of the most important transitions occurring during puberty is the motivation and desire to engage in romantic love. Whereas infants learn early in life the value of stable attachment and parental love, it is not until after the onset of the pubertal transition that young people become interested in romantic love. Romantic love has been conceptualized as an important attachment process, and adults’ romantic attachment styles frequently mirror the styles they experienced with their parents as infants (Hazan and Shaver, 1987). In addition, both romantic love and parental love facilitate bond formation, and make the formation and maintenance of these bonds positive and rewarding experiences (Bartels and Zeki, 2004). Despite significant overlap in the purpose, qualities, neurohormone binding sites, and neural correlates between parental and romantic love, there are also important distinctions (Bartels and Zeki, 2004). Both parental and romantic love facilitate nurturing, sensitive, responsive caretaking, but romantic love also includes distinct components, such as reciprocal power sharing and sexual desire. We propose that the hormonal changes associated with puberty contribute to neural transitions that prime the brain to learn about this new type of love, in order to facilitate mating, childbearing, and childcare.